
Ergodic Theory - Week 9

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

P1. (a) Show that if the system (X,B, µ, T ) is mixing, then for all strictly increasing sequences of
integers nk and any A ∈ B with µ(A) > 0, we have

µ

(
+∞⋃
k=1

T−nkA

)
= 1.

Let B =
⋃+∞

k=1 T
−nkA. Since the system is mixing, we have that

ĺım
n→+∞

µ(T−nA ∩B) = µ(A)µ(B).

In particular, we also have

ĺım
k→+∞

µ(T−nkA ∩B) = µ(A)µ(B).

Let ε > 0. If k is sufficiently large, we have that

µ(T−nkA ∩B) ≤ µ(A)µ(B) + ε. (1)

However, note that

T−nkA ∩B =

+∞⋃
ℓ=1

(T−nkA ∩ T−nℓA) ⊇ T−nkA ∩ T−nkA.

We infer that
µ(T−nkA ∩B) ≥ µ(T−nkA) = µ(A).

Combining this with (1), we get

µ(A) ≤ µ(A)µ(B) + ε =⇒ µ(B) ≥ µ(A)− ε

µ(A)
.

Taking ε sufficiently small, we conclude that µ(B) = 1.

(b) Show that if the system (X,B, µ, T ) is weak-mixing, then for all sequences of positive
integers nk with positive density and any A ∈ B with µ(A) > 0, we have

µ

(
+∞⋃
k=1

T−nkA

)
= 1.

* Show that the converse holds as well.
Hint: For the converse, use the fact that if a system has an eigenfunction, then it has a
factor map to a rotation system.
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Let B be defined as above. Since the system is weak-mixing there exists a set E ⊆ N,
such that Ec has zero density and

ĺım
n→+∞,n∈E

µ(T−nA ∩B) = µ(A)µ(B).

We observe that E must contain infinitely many elements of the sequence nk, as otherwise,
the set Ec would contain all elements nK , nK+1, ... for some K ∈ N and this would imply
that Ec cannot have zero density.

Let nNk
be a subsequence of nk such that nNk

∈ E for all k ∈ N. We deduce that

ĺım
k→+∞

µ(T−nNkA ∩B) = µ(A)µ(B).

Let ε > 0. If k is sufficiently large, we have that

µ(T−nNkA ∩B) ≤ µ(A)µ(B) + ε.

However, note that

T−nNkA ∩B =
+∞⋃
ℓ=1

(T−nNkA ∩ T−nℓA) ⊇ T−nNkA ∩ T−nNkA.

We infer that
µ(T−nNkA ∩B) ≥ µ(T−nNkA) = µ(A).

Similarly to part (a), we get

µ(A) ≤ µ(A)µ(B) + ε =⇒ µ(B) ≥ µ(A)− ε

µ(A)
.

Taking ε sufficiently small, we conclude that µ(B) = 1.

For the converse, we assume that for every set A of positive measure and any sequence nk

of positive density, we have µ(∪+∞
k=1T

−nkA) = 1. We suppose that the system (X,B, µ, T )
is not weak-mixing and we will arrive at a contradiction.

For simplicity, let us say that a system (X,B, µ, T ) is ”good” if for every set A ∈ B of
positive measure and any sequence nk of positive density, we have µ(∪+∞

k=1T
−nkA) = 1.

The proof is a bit lengthy, but the strategy is as follows: if the system is not weak-mixing,
it contains a factor that is isomorphic to a rotation on a compact abelian group. We show
that the property of being good descends to this factor and then the problem reduces to
showing that the rotation system does not possess the ”good” property.

We prove the following claim:

Claim: A factor of a good system is also a good system.

Proof. To prove this claim, assume that we have a factor map π : (X,B, µ, T ) → (Y,A, ν, S)
where the first system is good. Let B ∈ A have positive measure and let nk be any se-
quence with positive density. We want to show that

ν

(
+∞⋃
k=1

S−nkB

)
= 1.
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We prove this by showing that

ν

(
N⋃
k=1

S−nkB

)
= µ

(
N⋃
k=1

T−nkA

)
(2)

for all N ∈ N, where A = π−1(B) ∈ B. Indeed, since π is a factor map, we have
µ(A) = µ(π−1B) = ν(B) > 0. Then, taking the limit as N → +∞ and using the fact
that the system (X,B, µ, T ) is good, we reach the desired conclusion.

In order to show (2), it suffices to prove that

π−1

(
N⋃
k=1

S−nkB

)
=

N⋃
k=1

T−nkA

and the claim would follow from the fact that ν is the pushforward of µ under π.

Let x ∈
⋃N

k=1 T
−nkA (x is a point on X). Then, we have that Tnkx ∈ A for some k ∈

{1, . . . , N}. Since π is a factor map, we have π(Tnk(x)) = Snk(π(x)), so that Snk(π(x)) ∈
π(A). As A = π−1(B), we deduce that Snk(π(x)) = π(Tnkx) ∈ B. Therefore, π(x) ∈
S−nkB ⊆

⋃N
k=1 S

−nkB, so that x ∈ π−1(
⋃N

k=1 S
−nkB).

Conversely, assume that x ∈ π−1
(⋃N

k=1 S
−nkB

)
. Thus, π(x) ∈

⋃N
k=1 S

−nkB and we infer

that there exists k ∈ {1, . . . , N} such that Snkπ(x) ∈ B. We deduce that π(Tnkx) ∈ B
and thus, Tnkx ∈ π−1(B) = A. We conclude that x ∈

⋃N
k=1 T

−nkA.

Combining the last two arguments, we deduce that

π−1

(
N⋃
k=1

S−nkB

)
=

N⋃
k=1

T−nkA

and the claim follows.

We return to our exercise. Since the system is not weak-mixing, there exists an eigen-
function f with eigenvalue e(a) for some a ∈ [0, 1). Using exercise 4 a) from exercise
sheet 7, we know that there exists a factor map (X,B, µ, T ) → (Y,A, ν, S), such that the
system (Y,A, ν, S) is a rotation on a compact abelian group. In fact, an inspection of the
argument in this exercise shows that we can take Y to the rotation by a on the torus T,
when a is irrational, or the rotation on q points, when a = p/q, (p, q) = 1 is rational. We
conclude the exercise by showing that the last two types of systems are not good.

We start with the rotation on q points. Namely, we let Y = {0, . . . , q − 1} with the
uniform measure and the map Sx = x + 1 (mod q). We let A = {0} and take nk to be
the sequence of multiples of q. This has density 1/q and we also observe that T−kqA = 0
for all k ∈ N , since T kq(0) = 0. Therefore, we get that

+∞⋃
k=1

T−kqA = {0}

which has measure 1/q. Thus, the rotation on q points is not good.

Now, let a be irrational and consider the rotation on the torus (with the Borel σ-algebra
and the Lebesgue measure) by a. Namely, Tx = x+ a (mod 1). We let A = [0, 1/4] and
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B = [1/2, 3/4] (any pair of disjoint intervals works here, with slight modifications on the
choice of R below). Consider the set

R =

{
n ∈ N : {na} ∈

[
0,

1

100

]}
,

where {na} = na− ⌊na⌋. Since a is irrational, the sequence na is uniformly distributed
(mod 1), which implies that the set R has positive density (as it is equal to µ([0, 1/100]) =
1/100 ). We pick the sequence nk to be the elements of the set R in increasing order. For
any x ∈ A, we have that

Tnkx = x+ nka (mod 1) ∈
[
0,

1

4
+

1

100

]
.

Therefore, we have that T−nkA ∩B = ∅ which implies that

µ

(
+∞⋃
k=1

T−nkA

)
≤ µ(T \B) ≤ 3

4
.

We conclude that the rotation by a is not good.

To summarize, we have shown that if the original system is good but not weak-mixing,
then it has a factor that is not good. This contradicts our claim, which implies that our
original system is weak-mixing.

P2. (a) Let (X,B, µ, T ) be a weakly-mixing system. Show that for all a ∈ (0, 1) and any f ∈ L∞(X),
we have that

ĺım
N→+∞

1

N

N−1∑
n=0

e2πinaf(Tnx) = 0

for almost all x ∈ X.
Hint: See also exercise 1 in Week 4.

We split into two cases depending on whether a is irrational or not.

If a is irrational, we consider the system (T,B(T ), λ,R) to be the rotation by a on the
torus and define the product (X × T,B × B(T), µ × λ, T × R). Since a is irrational, the
rotation by a is ergodic and the weak-mixing assumption implies that our product system
is ergodic.

We let g(y) = e(y), y ∈ T and consider the function f ⊗ g(x, y) = f(x)g(y) defined on the
product X × T. Using the pointwise ergodic theorem, we infer that

ĺım
N→+∞

1

N

N−1∑
n=0

(T ×R)n(f ⊗ g)(x, y) =

∫
X×T

f ⊗ g d(µ× λ)

for (µ× λ)-almost all (x, y) ∈ X × T.
By Fubini’s theorem, we have that∫

X×T
f ⊗ g d(µ× λ) =

∫
T
f(x)

(∫
g(y)dλ(y)

)
dµ(x) = 0,

since g(y) has integral zero.
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On the other hand, we have that

(T ×R)n(f ⊗ g)(x, y) = f(Tnx)g(Sny) = f(Tnx)e(y + na) = e(y)e(na)f(Tnx).

Combining the last two calculations, we conclude that

ĺım
N→+∞

e(y)

N

N−1∑
n=0

e2πinaf(Tnx) = 0

for almost all (x, y) ∈ (X × T). Equivalently,

ĺım
N→+∞

1

N

N−1∑
n=0

e2πinaf(Tnx) = 0

for (µ× λ)almost all (x, y) ∈ (X × T).
Let A ⊆ X×T be the set of (x, y) for which the limit above is zero, so that (µ×λ)(A) = 1.
Fubini’s theorem implies that∫

T

(∫
X
1A(x, y)dµ(x)

)
dλ(y) = 1.

Since
∫
X 1A(x, y)dµ(x) ≤ 1 for all y ∈ T, there exists at least one y0 ∈ T such that∫

X 1A(x, y0)dµ(x) = 1. For this y0, we have 1A(x, y0) = 1 for almost all x ∈ X (otherwise
the integral would not equal 1), and, thus, for almost all x ∈ X, we have

ĺım
N→+∞

1

N

N−1∑
n=0

e(2πina)f(Tnx) = 0,

which is the desired conclusion.

Now, assume that a is rational and write a = p/q where p, q are coprime. Since the
sequence e(np/q) is periodic modulo q, we have

1

N

N−1∑
n=0

e(
np

q
)f(Tnx) =

1

N

∑
0≤r≤q−1

∑
0≤n≤N−1

n≡r (mod q)

e(pr/q)f(Tnx) =

∑
0≤r≤q−1

e(pr/q)

N

∑
0≤n≤N−1−r

q

f(T qn+rx). (3)

Since the system is weak-mixing, we know from Exercise 1 in Sheet 8 that T q is weak-
mixing and, thus, ergodic. Therefore, using the pointwise ergodic theorem (for the map
T q), we have that

ĺım
N→+∞

1

N

∑
0≤n≤N−1−r

q

f(T qnx) = ĺım
N→+∞

⌊(N − 1− r)/q⌋
N

∑
0≤n≤N−1−r

q

f(T qnx) =

∫
f dµ
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for almost all x ∈ X. In fact, for a set of full measure A, we have that

ĺım
N→+∞

1

N

∑
0≤n≤N−1−r

q

f(T qnx) =

∫
f dµ

for all 0 ≤ r ≤ q − 1.

Since µ(A) = 1, we have that µ(A ∩ T−1A ∩ · · · ∩ T−q+1A) = 1. Then, for every point
x ∈ A∩T−1A∩· · ·∩T−q+1A, we have that T rx ∈ A for every 0 ≤ r ≤ q−1. We conclude
that for almost all x ∈ X, we have

ĺım
N→+∞

1

N

∑
0≤n≤N−1−r

q

f (T qn(T rx)) =

∫
f dµ

for every 0 ≤ r ≤ q − 1.

For all x satisfying the conclusion above, we have that the limit in (3) is equal to

∑
0≤r≤q−1

e(pr/q)

∫
f dµ =

∫
f dµ

 ∑
0≤r≤q−1

e(pr/q)

 .

Since p and q are coprime, the numbers pr (mod q) take each value in the residue classes
modulo q exactly once. Therefore, the previous sum is equal to the sum over all the
q-roots of unity and, hence, they add up to zero. The result follows.

(b) Let (X,B, µ, T ) be a mixing system. Show that for all f ∈ L∞(X), we have

ĺım
N→+∞

∥∥∥ 1

N

N−1∑
n=0

T 2nf −
∫

fdµ
∥∥∥
L2(X)

= 0.

Hint: |2n − 2m| is ”large” for ”almost all” pairs (n,m).

We set g = f −
∫
f dµ (so that

∫
g dµ = 0) and we rewrite our expression as

ĺım
N→+∞

∥∥∥ 1

N

N−1∑
n=0

T 2ng
∥∥∥
L2(X)

= 0.

Rescaling g, we can assume that ∥g∥L∞(X) ≤ 1.

We have that

∥∥∥ 1

N

N−1∑
n=0

T 2ng
∥∥∥
L2(µ)

=

∫ ∣∣∣∣∣ 1N
N−1∑
n=0

T 2ng

∣∣∣∣∣
2

dµ =

∫ (
1

N

N−1∑
n=0

T 2ng

)(
1

N

N−1∑
n=0

T 2ng

)
dµ =∫

1

N2

∑
0≤n,m≤N−1

T 2ng · T 2mg dµ =
1

N2

∑
0≤n,m≤N−1

∫
T 2ng · T 2mg dµ.

We want to show that this last double average converges to zero, as N → +∞.

Since the system is mixing, we have that

ĺım
n→+∞

∫
g · Tng dµ = 0.
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Let ε > 0. Then, there exists R such that if n ≥ R, we have∣∣∣∣∫ g · Tng dµ

∣∣∣∣ < ε.

We split our average into three sums depending on whether n > m, n < m or n = m.

For the diagonal contribution, we just bound trivially∣∣∣∣∣ 1

N2

N−1∑
n=0

∫
T 2ng · T 2mg dµ

∣∣∣∣∣ ≤ 1

N2

N−1∑
n=0

∣∣∣∣∫ T 2ng · T 2mg dµ

∣∣∣∣ ≤ 1

N2

N−1∑
n=0

1 =
1

N
,

since g is 1-bounded.

We now bound the absolute value of the sum

1

N2

∑
0≤m<n≤N−1

∫
T 2ng · T 2mg dµ.

Since T is measure-preserving, we can rewrite this as

1

N2

∑
0≤m<n≤N−1

∫
g · T 2n−2mg dµ.

We count how many pairs (n,m) satisfy the inequality |2n − 2m| < R. Observe that
R > |2m(2n−m − 1)| implies that both m < log2R and n−m < log2(R + 1), from which
we get the condition that m < log2R and n < log2((R + 1)R). Thus, there are at most
log2(R) · log2(R(R + 1)) < 2 log22(R + 1) pairs (n,m) for which |2n − 2m| < R. For all
other pairs, we have that

∣∣∫ g · T 2n−2mg dµ
∣∣ < ε.

We let S be the pairs (n,m) of integers for which 2n − 2m < R. Then, for N much larger
than R, we have∣∣∣∣∣∣ 1

N2

∑
0≤m<n≤N−1

∫
g · T 2n−2mg dµ

∣∣∣∣∣∣ ≤ 1

N2

∑
0≤m<n≤N−1

∣∣∣∣∫ g · T 2n−2mg dµ

∣∣∣∣ =
1

N2

∑
0≤m<n≤N−1

(n,m)∈S

∣∣∣∣∫ g · T 2n−2mg dµ

∣∣∣∣+ 1

N2

∑
0≤m<n≤N−1

(n,m)/∈S

∣∣∣∣∫ g · T 2n−2mg dµ

∣∣∣∣ ≤
1

N2

∑
0≤m<n≤N−1

(n,m)∈S

1 +
1

N2

∑
0≤m<n≤N−1

(n,m)/∈S

ε =
|{(n,m) : 0 ≤ m < n ≤ N − 1, (n,m) ∈ R}|

N2
+

|{(n,m) : 0 ≤ m < n ≤ N − 1, (n,m) /∈ R}|
N2

ε <
2 log22(R+ 1)

N2
+
N2

N2
ε = ε+

2 log22(R+ 1)

N2
.

An entirely similar argument gives the bound∣∣∣∣∣∣ 1

N2

∑
0≤n<m≤N−1

∫
T 2mg · T 2ng dµ

∣∣∣∣∣∣ < ε+
2 log22(R+ 1)

N2
.
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If we combine the 3 bounds, we get that∣∣∣∣∣∣ 1

N2

∑
0≤n,m≤N−1

∫
T 2ng · T 2mg dµ.

∣∣∣∣∣∣ ≤ 2ε+
4 log22(R+ 1)

N2
+

1

N
.

Sending N → +∞, we infer that

lim sup
N→+∞

∥∥∥ 1

N

N−1∑
n=0

T 2ng
∥∥∥
L2(X)

≤ 2ε.

Since ε was arbitrary, the result follows.

P3. A measure preserving system (X,B, µ, T ) is called rigid if there is an increasing sequence
(nk)k∈N ⊆ N such that for all f ∈ L2(X,B, µ), we have ∥f ◦ Tnk − f∥2 → 0 as k → ∞.

(a) Prove that (X,B, µ, T ) is rigid if and only if there is an increasing sequence (nk)k∈N ⊆ N,
a dense subset V ⊆ L2(X,B, µ) such that for all f ∈ V , ∥f ◦ Tnk − f∥2 → 0 as k →
∞.

The first direction is immediate by picking V to be any dense subset of L2(X) (for example,
the set of all linear combinations of characteristic functions of measurable sets).

For the other direction, let V be a dense subset of L2(X) and let f be any square integrable
function. Let ε > 0 and pick a function g ∈ V such that ∥f − g∥L2(X) ≤ ε. Then, we have

∥Tnkf − f∥L2(X) ≤ ∥Tnkf − Tnkg∥L2(X) + ∥Tnkg − g∥L2(X) + ∥g − f∥L2(x) =

2∥f − g∥L2(X) + ∥Tnkg − g∥L2(X) ≤ 2ε+ ∥Tnkg − g∥L2(X),

where we used the fact that T preserves µ. Since g ∈ V , we have ∥Tnkg − g∥L2(X) → 0
and, thus,

lim sup
k→+∞

∥Tnkf − f∥L2(X) ≤ 2ε.

Since ε was arbitrary, the result follows.

(b) Suppose that (X,µ,B, T ) has discrete spectrum. Prove that (X,µ,B, T ) is rigid.
Hint: Use part (a) for a suitable dense subspace V ⊆ L2(X,B, µ), and also use P2 from
the Exercise sheet 6.

Solution: As the system has discrete spectrum, we have that there is an orthonormal
basis {fk}k∈N of L2(X) consisting of eigenfunctions. Thus, it is enough to prove the
statement for V = ⟨{fk}k∈N⟩ by the previous part.

For every k ∈ N, denote αk ∈ T the element such that e2πiαk is eigenvalue associated to
fk. Let (nk)k be the sequence given by Problem 2 from Exercise sheet 6. We claim that
this sequence satisfies the desired property. Indeed, let K ∈ K and a1, . . . , aK ∈ R. Then
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consider f =
∑K

j=1 ajfj . We have that for every k ≥ K

∥f ◦ Tnk − f∥2 ≤
K∑
j=1

∥ajfj ◦ Tnk − ajfj∥2

=

K∑
j=1

|aj ||e2πinkαj − 1|| ∥fj∥2︸ ︷︷ ︸
=1

≤
K∑
j=1

|aj |||nkαj ||T

≤ 1

k
K máx

j=1,...,K
|aj |.

Taking k → ∞ we get ∥f ◦ Tnk − f∥2 → 0. Thus, any function f ∈ V satisfies the desired
property and since V is dense in L2(X), we get the desired conclusion.

(c) We call a system (X,B, µ, T ) mildly mixing if it has no non-trivial rigid factors. Namely,
there does not exist a factor map (X,, µ, T ) → (Y,A, ν, S) such that the system (Y,A, ν, S)
is rigid.

Show that a mixing system is mildly mixing.

First of all, we observe that a factor of mixing system is also mixing (to see this, argue
similarly as in Exercise 1b) in Sheet 8). Therefore, our result will follow if we show that
there cannot be a non-trivial system (X,B, µ, T ) that is both rigid and mixing.

Indeed, assume that the system is both mixing and rigid. Then, there exists a sequence
nk → +∞ such that ∥Tnkf − f∥L2(X) → 0 for all f ∈ L2(X). Using the Cauchy-Schwarz
inequality, we deduce that∣∣∣∣∫ f · Tnkf dµ−

∫
|f |2 dµ

∣∣∣∣ ≤ ∫ ∣∣f · (Tnkf − f)
∣∣ dµ ≤ ∥f∥L2(X)∥Tnkf − f∥L2(X) → 0.

Since the system is mixing, we have that

ĺım
k→+∞

∫
f · Tnkf dµ →

∫
f dµ

∫
f dµ =

∣∣∣∣∫ f dµ

∣∣∣∣2 .
Combining the above, we conclude that for any f ∈ L2(X), we have∫

|f |2 dµ =

∣∣∣∣∫ f dµ

∣∣∣∣2
Therefore, f is almost everywhere equal to a constant (it satisfies the equality case in the
Cauchy-Schwarz inequality) and thus the system is isomorphic to the trivial system. The
result follows.

P4. Consider the system (T2,B(T2), µ, T ) where µ is the Haar measure in T2 and T is the baker’s
map defined by

T (x, y) = (2x− ⌊2x⌋, y + ⌊2x⌋
2

).

Prove that this map is a Bernoulli system.
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Solution: Consider the map φ : ({0, 1}Z, ν, S) → (T2, µ, T ) given by

φ(σ) = (
∞∑
k=0

σ−k2
−(k+1),

∞∑
k=0

σk+12
−(k+1)).

for every sequence σ = (σk)k∈Z ∈ {0, 1}Z. We see that this map is an isomorphism. Indeed,
this map represents the 2-ary representations of any number on T2, and therefore this map is
a bijection in a set of full measure (for example, in

X0 = {0, 1}Z \ {σ ∈ {0, 1}Z : ∃K ∈ N, (σk = 1,∀k ≥ K) ∨ (σ)−k = 1, ∀k ≥ K)}).

On the other hand, notice that for σ ∈ {0, 1}Z,

φ(Sσ) = (

∞∑
k=0

σ−k−12
−(k+1),

∞∑
k=0

σk2
−(k+1))

= (2

∞∑
k=0

σ−k2
−(k+1) − σ0,

∑∞
k=0 σk+12

−(k+1) + σ0
2

)

= (2

∞∑
k=0

σ−k2
−(k+1) − ⌊2

∞∑
k=0

σ−k2
−(k+1)⌋,

∑∞
k=0 σk+12

−(k+1) + ⌊2
∑∞

k=0 σ−k2
−(k+1)⌋

2
)

= T (φ(σ)).

Finally, we see that φν = µ. Indeed, notice that it is enough to prove it for a basic open set of
the form [ j

2k
, j+1

2k
) × [ i

2l
, i+1

2l
) ∈ B(T2) for j < 2k and i < 2l, since these generate the product

σ-algebra. We have that

φν([
j

2k
,
j + 1

2k
)× [

i

2l
,
i+ 1

2l
)) =

ν({σ ∈ {0, 1}Z :
∞∑
k=0

σ−k2
−(k+1) ∈ [

j

2k
,
j + 1

2k
),

∞∑
k=0

σk+12
−(k+1) ∈ [

i

2l
,
i+ 1

2l
)}).

Observe that
∑∞

k=0 σ−k2
−(k+1) ∈ [ j

2k
, j+1

2k
) fixes k coordinates, meanwhile

∑∞
k=0 σk+12

−(k+1) ∈
[ i
2l
, i+1

2l
) fixes l different coordinates. Therefore, we have

φν([
j

2k
,
j + 1

2k
)× [

i

2l
,
i+ 1

2l
))) =

1

2k
· 1

2l
= µ([

j

2k
,
j + 1

2k
)× [

i

2l
,
i+ 1

2l
)),

and the result follows.
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