Ergodic Theory - Week 9

Course Instructor: Florian K. Richter
Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

P1. (a) Show that if the system (X, B, u,T) is mixing, then for all strictly increasing sequences of
integers ny and any A € B with pu(A4) > 0, we have

()

k=1
Let B = Uz;'ol T~™ A. Since the system is mixing, we have that

lim uw(T""ANB) = u(A)u(B).

n—-+o0o

In particular, we also have

lim pu(T7™ANB)=pu(A)u(B).

k—+o0

Let € > 0. If k is sufficiently large, we have that
(T~ AN B) < p(A)pu(B) + e (1)

However, note that

+oo
T-™ANB=|J(I"™ANT ™A) DT ™ ANT ™A
=1

We infer that
(T~ A B) > p(T~" A) = (A).

Combining this with (1), we get

A —e

1(A) < p(A)u(B) +e = p(B) = A

Taking e sufficiently small, we conclude that pu(B) = 1.

(b) Show that if the system (X, B,u,T) is weak-mixing, then for all sequences of positive
integers ny with positive density and any A € B with p(A) > 0, we have

+o00
I (U T_”’“A> =1.
k=1

* Show that the converse holds as well.

Hint: For the converse, use the fact that if a system has an eigenfunction, then it has a
factor map to a rotation system.



Let B be defined as above. Since the system is weak-mixing there exists a set £ C N,
such that E¢ has zero density and

lim  w(T7"ANB) = u(A)u(B).

n—+oo,nek

We observe that EF must contain infinitely many elements of the sequence ny, as otherwise,
the set £ would contain all elements ngx,ng+1, ... for some K € N and this would imply
that E° cannot have zero density.

Let ny, be a subsequence of n such that ny, € E for all k € N. We deduce that

lim p(T7 "™ ANB) = pu(A)u(B).

Let € > 0. If k is sufficiently large, we have that
(T~ A0 B) < p(A)u(B) + .

However, note that

+oo
T™"™eANB = | J(T™™ e ANT™A) DT "™ ANT "Ne A,
=1

We infer that
(T~ A0 B) = p(T ™" A) = p(A).

Similarly to part (a), we get
u(A) < p(Apu(B) +e = w(B) =

Taking ¢ sufficiently small, we conclude that p(B) = 1.

For the converse, we assume that for every set A of positive measure and any sequence ng
of positive density, we have u(U,j;'OlT_”k A) = 1. We suppose that the system (X, B, u, T')
is not weak-mixing and we will arrive at a contradiction.

For simplicity, let us say that a system (X, B, u,T) is "good” if for every set A € B of
positive measure and any sequence ny of positive density, we have M(UZST R A) = 1.
The proof is a bit lengthy, but the strategy is as follows: if the system is not weak-mixing,
it contains a factor that is isomorphic to a rotation on a compact abelian group. We show
that the property of being good descends to this factor and then the problem reduces to
showing that the rotation system does not possess the ”good” property.

We prove the following claim:

Claim: A factor of a good system is also a good system.

Proof. To prove this claim, assume that we have a factor map 7 : (X, B, u, T) — (Y, A, v, 5)
where the first system is good. Let B € A have positive measure and let n; be any se-
quence with positive density. We want to show that

(o) -1

k=1



We prove this by showing that

N N
v (U S”kB> = (U T”kA) (2)
k=1 k=1

for all N € N, where A = 7~ 1(B) € B. Indeed, since 7 is a factor map, we have
w(A) = p(n~'B) = v(B) > 0. Then, taking the limit as N — +o0o and using the fact
that the system (X, B, u, T) is good, we reach the desired conclusion.

In order to show (2), it suffices to prove that

N N
a ! (U Sn’“B> = U T ™A
k=1 k=1

and the claim would follow from the fact that v is the pushforward of p under .

Let x € U,]jzl T~ A (x is a point on X ). Then, we have that 7™z € A for some k €
{1,...,N}. Since 7 is a factor map, we have w(T"*(z)) = S™ (m(x)), so that S™ (mw(x)) €
m(A). As A = 77Y(B), we deduce that S™(w(x)) = n(T™z) € B. Therefore, 7(z) €
S~ B C U}]{,'Vzl S—" B, so that x € 77 1( ;.;\[21 S~ B).

Conversely, assume that « € 7~} ( ,1\;1 S”“CB). Thus, 7(x) € U]kV:1 S~™ B and we infer
that there exists k € {1,..., N} such that S™ 7 (x) € B. We deduce that 7(T"x) € B
and thus, T"x € 7~ }(B) = A. We conclude that = € ngl T " A.

Combining the last two arguments, we deduce that

N N
! (U S—”kB> = JT ™A
k=1 k=1
and the claim follows. O

We return to our exercise. Since the system is not weak-mixing, there exists an eigen-
function f with eigenvalue e(a) for some a € [0,1). Using exercise 4 a) from exercise
sheet 7, we know that there exists a factor map (X, B, u,T) — (Y, A, v, S), such that the
system (Y, A, v, S) is a rotation on a compact abelian group. In fact, an inspection of the
argument in this exercise shows that we can take Y to the rotation by a on the torus T,
when a is irrational, or the rotation on ¢ points, when a = p/q, (p,q) = 1 is rational. We
conclude the exercise by showing that the last two types of systems are not good.

We start with the rotation on ¢ points. Namely, we let Y = {0,...,¢ — 1} with the
uniform measure and the map Sz = z + 1 (mod ¢). We let A = {0} and take ny to be
the sequence of multiples of q. This has density 1/q and we also observe that T~*9A4 = 0
for all k € N, since T%9(0) = 0. Therefore, we get that

+o0
| 77%4 = {0}
k=1

which has measure 1/q. Thus, the rotation on ¢ points is not good.

Now, let a be irrational and consider the rotation on the torus (with the Borel o-algebra
and the Lebesgue measure) by a. Namely, Tz = x + a (mod 1). We let A = [0,1/4] and



B = [1/2,3/4] (any pair of disjoint intervals works here, with slight modifications on the
choice of R below). Consider the set

R—{neN:{na}e [0,1(1)0”,

where {na} = na — [na]. Since a is irrational, the sequence na is uniformly distributed
(mod 1), which implies that the set R has positive density (as it is equal to p([0,1/100]) =
1/100 ). We pick the sequence ny to be the elements of the set R in increasing order. For
any x € A, we have that

1 1
(T _ B
Tz =x+nga (modl)e [0, 1 + 100] :

Therefore, we have that T~ AN B = () which implies that

400 B 3
M(UT kA) SM(T\B)SZ

k=1

We conclude that the rotation by a is not good.

To summarize, we have shown that if the original system is good but not weak-mixing,
then it has a factor that is not good. This contradicts our claim, which implies that our
original system is weak-mixing.

P2. (a) Let (X, B, u,T) be a weakly-mixing system. Show that for alla € (0,1) and any f € L*°(X),

we have that
1 N—1
1i - 2mina Tn _
i 3 e o

for almost all z € X.
Hint: See also exercise 1 in Week 4.

We split into two cases depending on whether a is irrational or not.

If a is irrational, we consider the system (T,B(7),\, R) to be the rotation by a on the
torus and define the product (X x T, B x B(T),u x A\,T x R). Since a is irrational, the
rotation by a is ergodic and the weak-mixing assumption implies that our product system
is ergodic.

We let g(y) = e(y),y € T and consider the function f ® g(x,y) = f(x)g(y) defined on the
product X x T. Using the pointwise ergodic theorem, we infer that

N-1

ln ST XR (9w = [ Fegdux)

N—
too V" XxT

for (1 x A)-almost all (z,y) € X x T.
By Fubini’s theorem, we have that

/Xfo ®gd(px ) = /Tf(:c) (/ g(y)d)\(y)> du(z) = 0,

since g(y) has integral zero.




On the other hand, we have that
(T x R)"(f®g)(z,y) = f(T"x)g(5"y) = f(T"x)e(y + na) = e(y)e(na) f(T" ).

Combining the last two calculations, we conclude that

N-—1
’ €(y) 2mina n
1 “\IJ _
o g . e f(T"z) =0

for almost all (z,y) € (X x T). Equivalently,

1 N-1
3 - 2mina n _
N1—1>r—Ii-100 N r;) c f(T x) 0

for (u x A)almost all (z,y) € (X x T).

Let A C X xT be the set of (x,y) for which the limit above is zero, so that (ux A)(A) = 1.
Fubini’s theorem implies that

/. </X 11“(‘””’1’““(““)) dA() = 1.

Since [y La(x,y)dp(z) < 1 for all y € T, there exists at least one yo € T such that
Jx 1a(z, yo)du(x) = 1. For this yo, we have 14(x,yo) = 1 for almost all € X (otherwise
the integral would not equal 1), and, thus, for almost all z € X, we have

N-1
1
NE)I-I‘,}OO N T; e(2mina) f(T"x) = 0,

which is the desired conclusion.

Now, assume that a is rational and write a = p/q where p,q are coprime. Since the
sequence e(np/q) is periodic modulo ¢, we have

N—

1 1
N CI =5 3T 3 elr/a)f (1) =
n=0 0<r<g—1 0<n<N-1

n=r (mod q)

—

Z e(p]':f/Q) Z f(an+T£L'). (3)

0<r<g—-1 0<n< N—-1-—r
- - q

Since the system is weak-mixing, we know from Exercise 1 in Sheet 8 that TY is weak-
mixing and, thus, ergodic. Therefore, using the pointwise ergodic theorem (for the map
T9), we have that

‘ 1 n . KN —1- T)/QJ n
NLHEOO N ZN: 1 f(Tq :L‘) - Ngrilm N ZN: 1 f(Tq x) B /fdM
Ogng% OSHS%




for almost all x € X. In fact, for a set of full measure A, we have that

1
If — f(riy) d
Ni)IEOON Z /f a
0<n<N 1 r
foral 0 <r <gq-—1.

Since u(A) = 1, we have that u(ANT 1AN---NT~ 9 A) = 1. Then, for every point
r € ANTTAN---NT~ 91 A, we have that T"z € A for every 0 < r < ¢ — 1. We conclude
that for almost all x € X, we have

> @) = [t

N—+oco N
0§n§¥

forevery 0 <r < ¢q—1.
For all z satisfying the conclusion above, we have that the limit in (3) is equal to

e(pr/q) /fdu /fdu e(pr/q)

0<’r‘<q 1 0<r<q—1

Since p and ¢ are coprime, the numbers pr (mod ¢) take each value in the residue classes
modulo ¢ exactly once. Therefore, the previous sum is equal to the sum over all the
g-roots of unity and, hence, they add up to zero. The result follows.

(b) Let (X,B,u,T) be a mixing system. Show that for all f € L>°(X), we have

1N—l
i | = s
N—1>I-I&-loo an—:() f fd'u

Hint: |2" — 2™| is "large” for ”almost all” pairs (n,m).

2x)

We set g = f — [ fdu (so that [ gdu = 0) and we rewrite our expression as

(%) =0.

3 1
lim H —
N——+oo

Rescaling g, we can assume that ||g[|px) < 1.
We have that

2

-1 1 N-—1 1 N—-1 1 N-1
=y 7™ = [ =) Tl du= [ | =) T%g| | =Y T%g|du=
¥ X, /Nz o= [ (Y Z7) (3 S o) a
n=0 n=0 n=0 n=0
m 1 m
/ T'¢.T?"g gd,u—ﬁ Z /T2 g-T?" gdpu.
0<nm<N 1 0<n,m<N-1

We want to show that this last double average converges to zero, as N — 4o0.
Since the system is mixing, we have that

lim g-T'gdu=0.

n—-+o00




Let € > 0. Then, there exists R such that if n > R, we have
'/g-T"gdu‘ <e.

We split our average into three sums depending on whether n > m, n < m or n = m.
For the diagonal contribution, we just bound trivially

1 N-1 1 N-1 1 N-1 1
2m m 2m m _
WE /T g-T*"gdu Sﬁg /T g-T? Qdﬂ'ﬁj\mg 1—N7
n=0 n=0 n=0

since g is 1-bounded.

We now bound the absolute value of the sum

1 n 77”
N2 Z /TQQ-T2 gdpu.

0<m<n<N-1

Since T is measure-preserving, we can rewrite this as

]. o n__om
i /9‘T229dﬂ~

0<m<n<N-1

We count how many pairs (n,m) satisfy the inequality |2" — 2| < R. Observe that
R > |2m(2"~™ — 1)| implies that both m < logy R and n — m < logy(R + 1), from which
we get the condition that m < logy, R and n < logy((R + 1)R). Thus, there are at most
logs(R) - logo(R(R + 1)) < 2log3(R + 1) pairs (n,m) for which |2" — 2™| < R. For all
other pairs, we have that | [g-T%" ~*"gdp| <e.

We let S be the pairs (n,m) of integers for which 2" — 2™ < R. Then, for N much larger
than R, we have

% > /g-T2n_2mgdu §$ >

0<m<n<N-1 0<m<n<N-1

% Z /g-TQn_ngdu’+]$2 Z

0<m<n<N-1 0<m<n<N-1

/g.TQ"—T"gd'u' <

(n,m)es (n,m)¢S
1 1 {(n,m): 0<m<n<N-—1,(n,m) € R}
e 2 v > e= N +
0<m<n<N—1 0<m<n<N-—1
(n,m)es (n,m)¢sS
H{(n,m): 0<m<n<N-—1,(n,m) ¢ R} 2logj(R+1) N2 2logj(R+1)
N2 e < N2 +ﬁ€ = €+T

An entirely similar argument gives the bound

= /T2 g -T2 gdu <s+2‘](\72.
0<n<m<N-1



If we combine the 3 bounds, we get that

3 Z /T g-T""gdp.| <2+ —o—F + —.
N 0<n,m<N-1 N N

Sending N — 400, we infer that

1 N-1
lim sup HN Z "¢
n=0

N—+o00 L2(X)

Since € was arbitrary, the result follows.

P3. A measure preserving system (X,B,u,T) is called rigid if there is an increasing sequence
(nk)ken C N such that for all f € L?(X, B, 1), we have ||f o T — f|l2 — 0 as k — oo.

(a) Prove that (X, B, u,T) is rigid if and only if there is an increasing sequence (ng)ren C N,

a dense subset V' C L%(X,B,u) such that for all f € V, ||foT™ — flla — 0 as k —
0.

The first direction is immediate by picking V to be any dense subset of L?(X) (for example,
the set of all linear combinations of characteristic functions of measurable sets).

For the other direction, let V' be a dense subset of L?(X) and let f be any square integrable
function. Let € > 0 and pick a function g € V' such that || f — g[|z2(x) < &. Then, we have

1T f = fllezce) S IT™ f =T gllz2x) + 1T 9 = gll2x) + 19 = fllrz@) =
201 f = glle2x)y + 117" g — gllp2xy < 26 + 1T g — gllL2(x)
where we used the fact that 1" preserves p. Since g € V, we have [T g — g|2(x) — 0

and, thus,
limsup||T™ f — fllr2(x) < 2e.

k——+o0

Since € was arbitrary, the result follows.

(b) Suppose that (X, u, B,T) has discrete spectrum. Prove that (X, u, B,T) is rigid.

Hint: Use part (a) for a suitable dense subspace V C L?(X, B, 1), and also use P2 from
the Exercise sheet 6.

Solution: As the system has discrete spectrum, we have that there is an orthonormal
basis {f}ren of L?(X) consisting of eigenfunctions. Thus, it is enough to prove the
statement for V' = ({fx }ren) by the previous part.

For every k € N, denote aj, € T the element such that €27 is eigenvalue associated to
fr- Let (ng)x be the sequence given by Problem 2 from Exercise sheet 6. We claim that
this sequence satisfies the desired property. Indeed, let K € K and a1,...,ax € R. Then




consider f = Z]K:l a; f;. We have that for every k > K

K
1o T = flla < llaf5 o T™ — a;fill2

=1

K .
= lagl[e*™™ 5 — 11| || £5]2
j=1 —

=1

K
< lagllngayll
j=1

-----

Taking k — oo we get ||f o T™ — f||a — 0. Thus, any function f € V satisfies the desired
property and since V is dense in L?(X), we get the desired conclusion.

(c) We call a system (X, B, u, T) mildly mixing if it has no non-trivial rigid factors. Namely,
there does not exist a factor map (X, u,T) = (Y, A, v, S) such that the system (Y, A, v, S)
is rigid.

Show that a mixing system is mildly mixing.

First of all, we observe that a factor of mixing system is also mixing (to see this, argue
similarly as in Exercise 1b) in Sheet 8). Therefore, our result will follow if we show that
there cannot be a non-trivial system (X, B, u, T') that is both rigid and mixing.

Indeed, assume that the system is both mixing and rigid. Then, there exists a sequence
ng — +o0 such that [T f — f|2(x) — 0 for all f € L?(X). Using the Cauchy-Schwarz
inequality, we deduce that

‘/f~T”’“fdu—/|f|2du' S/}f- (T f — )] dp < 11l z200 1T F — Fllzzce — 0.

Since the system is mixing, we have that

2

Jm f-T”kfdu%/fdu/fd/L:‘/fdu

Combining the above, we conclude that for any f € L?(X), we have

/|f!2du:'/fdu

Therefore, f is almost everywhere equal to a constant (it satisfies the equality case in the
Cauchy-Schwarz inequality) and thus the system is isomorphic to the trivial system. The
result follows.

2

P4. Consider the system (T2, B(T?), u,T) where p is the Haar measure in T2 and T is the baker’s
map defined by
y + [22]

T(z,y) = (2x — | 2x], 5

).

Prove that this map is a Bernoulli system.



Solution: Consider the map ¢ : ({0,1}%,v,S) — (T?, u,T) given by

— (Z U—k2_(k+l)7zak+12_(k+1))
k=0 k=0

for every sequence o = (o%)rez € {0, 1}Z. We see that this map is an isomorphism. Indeed,
this map represents the 2-ary representations of any number on T2, and therefore this map is
a bijection in a set of full measure (for example, in

Xo={0,1}2\ {0 €{0,1}2: 3K €N, (04, = 1,Yk > K) V (0)_ = 1,Vk > K)}).

On the other hand, notice that for o € {0, 1}%,

_ (Z 07k7127(k+1)7 Zak27(k+l))
k=0 k=0

= (2 ig_kg—(k+l) . >0 k12”1 4 gy

2
—(k
ZU 2D Za p2 )| Ek 00ht12 D 25700 j g 27 ()|
2
= T(SO(U))-
Finally, we see that v = u. Indeed, notice that it is enough to prove it for a basic open set of
the form [;—k, ]2%1) X [21“?'—11) € B(T?) for j < 2 and i < 2!, since these generate the product

o-algebra. We have that

J J+1 i+l
@V([ka, ok )X[?’T))_

o0

R _ j j+1 i1
v({o € {0,1}%: Za_kZ (k+1) ¢ 2k7 ZUk 2~ (D) [?77)})

Observe that Y732 o2~ D) ¢ [1, 32%1) fixes k coordinates, meanwhile > 7° oy, 127+ €

. 2
[575 Z';—ll) fixes [ different coordinates. Therefore, we have

JoiHl. il 11§ oq4l ioitl
27a ok )X[?’T)))_Qj?_u([?a ok )X[?,T))’

and the result follows.

ov([
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